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Abstract

Using the IA-32 platform for time critical tasks allows the highest computing
performance at reasonable hardware costs. However, systems with restricted
resources have been limited to proprietary real-time operating systems. As
many of available open source real-time distributions base on the Linux ker-
nel, the relatively high requirements of Linux also apply to these systems. In
this work a porting of the open source RTAI distribution to a bare machine is
presented which eliminates Linux’ core subsystems. Thus the image size and
the memory footprint are optimized for small systems. Henceforth, a freely
available, efficient and well supported real-time operating system can be used
on [A-32 with restricted resources.
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Aufgabenstellung

Das Realtime Application Interface (RTAI) ist ein Weg, die Echtzeitfahigkeit
von Linux zu erreichen. Nachteilig ist jedoch der verhéltnismaBig groBe Spei-
cherplatzbedarf eines RTAI-Systems sowie die fehlende Separierung zwischen
Echtzeit-Applikationen und Linux-Kernel. Ziel der Arbeit ist es daher, fiir die
PC-Architektur IA-32 das Linux-Subsystem aus einem RTAI-System zu elimi-
nieren.

Fiir eine DSP-Architektur ist dies bereits erfolgreich durchgefiihrt worden
(DA Jens Kretzschmar), die Intel-Architektur bietet jedoch einige Herausforde-
rungen, da vielfiltige Beziehungen zwischen RTAI und dem Linux-Subsystem
bestehen. Unter anderem muss der Bootvorgang und der Start des Systems neu
konzipiert werden, der traditionelle insmod/rmmod-Mechanismus steht nicht
mehr zur Verfiigung.

Das resultierende System ist ein sehr kleiner, iibersichtlicher und effizien-
ter Echtzeitkernel, der die RTAI-API bietet und fiir Systeme mit stark einge-
schrinkten Ressourcen priadestiniert ist.
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Chapter 1

Introduction

In the recent past there was an increasing demand for applications that run with
strict timing constraints. The fields of such applications spread over processing
audio and/or video data i.e. for telecommunications to dealing with complex
calculations in motor control units. All this applications have something in
common and that is; they need to fulfill their work in a time bounded fashion
to avoid service degeneration or damage to the system to which they belong.

Usually the development of such applications does not start from scratch for
the desired target environment (that means the CPU, the system board etc.) but
an existing operating system is used which provides a more or less extensive
set of functionality. Nowadays there is a wide range of various commercial
and/or proprietary real-time operation systems (RTOS) and open-source vari-
ants. Using the later ones does not only result in cost saving but also in having
a “white box” system which guarantees full control over it. This is true also for
the progress of the development as needed modifications could be integrated
upstream. So using open source additionally provides investment security.

At the time of writing, Linux as the most commonly known open source
operating system is still a general-purpose operating system (GPOS) and does
not yet deserve being called an RTOS. However, using Linux as a starting point
for a real-time environment does make sense because of the code maturity and
support for the most common hardware.

Basically there exist two strategies to enhance the Linux kernel with real-
time capabilities:

* Modifying the Linux kernel itself to provide the wanted determinism and
predictability. For historical reasons this approach was developed in par-
allel to the kernel as some of the original design goals were oppositional
to what would be needed by a real-time operating system. But today
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there is an ongoing development to integrate native real-time support
into the Linux as shown in the following paragraphs.

* Using an additional real-time kernel which encloses/bases the standard
Linux kernel. While this concept seems to be very similar to using a
micro or nano kernel driven approach, it differs in so far as the added
real-time part could be and usually is interwoven closely with the stan-
dard kernel. Also, in a micro or nano kernel based system only the core
components run in kernel mode whereas the non-essential services, in
this domain then called servers, resist in user-space.

When the development on Linux started it was solely designed to run on In-
tel’s 386 or 486 CPUs. And it tried to use all available features of the CPU,
particularly paging and the 32-bit protected mode. The reasons for this be-
comes clear when remembering the historic situation of these days. Linux was
intended to be a replacement for the Minix system which was mostly used as an
educational operating system. Linux itself, however, was (and still is) strictly
user oriented. That means that during the evolution and in the following time,
only those features which were actively used and needed get integrated. The
two main fields of application were desktop and server systems for a long time.
Therefore, and as hardware, particularly RAM, becomes more and more avail-
able at reasonable costs, other goals dominated the development and compro-
mises geared towards economical resource use were needed. By the example
of RAM, the result is that a minimal Linux kernel requires at least 2 MiB of
installed RAM in the target system.

RTAI is an enhancement for the Linux kernel to provided real-time support.
The minimal requirements of the resulting system with respect to e.g. the
memory size do not change. On the contrary, the extension tries to manage
with the resources provided by the host system. Therefore to reduce the total
requirements, the Linux side of the requirements has to be trimmed or the
Linux subsystem has to be eliminated altogether.

In this work such a trimmed version of a RTAI enabled kernel is presented
forming a lightweight implementation LRTAI of the RTAI API. Thereby only
the traditional Intel architecture IA-32 is focused, similar work for e. g. a DSP
architecture was performed by [1]] and [2]]. Also a lower bound of the required
memory for the newly developed system will be discussed and this is expected
to simplify the decision whether the use of LRTAI for a real-time system should
be considered or if a traditional Linux/RTAI system would be more appropriate.
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2.1 Linux kernel’s native real-time support

2.1.1 Historical non-preemptibility

As already mentioned the Linux kernel was originally not designed for real-
time awareness. One indication for this is that all interrupts are treated as
equal. For a possible prioritization the kernel relies on the hardware to care
for this. Also it was not a preemptive kernel at all. It was assumed that, when
entering the kernel from a trap or a system call, the current user-space process
would not change unexpectedly.

In kernel version 2.0 a global kernel lock was inserted to ease the introduc-
tion of symmetric multiprocessing (SMP) support. This was needed to protect
some critical sections and to serialize the access to important data structures. If
a process wanted to enter the kernel, it had to acquire this so called “Big Kernel
Lock” (BKL). The kernel itself could therefore be seen as a big critical section
which was not preemptible. However, it was possible that a process calls the
scheduler voluntary.

A kernel with such properties is not suitable for real-time systems. If a hard-
ware interrupt occurs which e. g. could be triggered from an active I/O device
while a process is running in kernel mode, the interrupt handler is delayed un-
til the running process finishes its work. One sees that the interrupt response
time is subject to large fluctuations which is not useable in real-time operating
systems.

During the further kernel development on version 2.2 and 2.4 the big kernel
lock was increasingly replaced with finer-grained localized locks of particular
critical sections. This improved the response times slightly but the kernel could
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still not be regarded as real-time aware.

The lack of real-time support has some simple reasons: Linus Torvalds, the
original author and maintainer of the Linux kernel, defied adding real-time rel-
evant patches for a long time following the idea of high stability and throughput
of traditional UNIX kernels.

But the then current situation was not satisfying for many Linux users. So
two independent works started to resolve the problem. The results of these
works were some patches which could be applied to the kernel’s sources tree.
As they were not included in the kernel’s upstream both were maintained out-
side the kernel tree for a long time. Both patches which actually are patch sets
are shortly presented in the following two subsections.

2.1.2 The Preemption Patches

The embedded Linux vendor MontaVista Software, Inc [5]] was one of the ac-
tivists. After publishing in the year 2000, their work was quickly picked up by
the Linux community and consists of the actual preemption patch and a real-
time scheduler. Usually this work is referred to as the “preemption patches”
which are maintained by Robert Love in the meantime and can be obtained
from his kernel.org space [6].

The work tries to minimize the time lag between an incoming event e. g. an
interrupt and the next invocation of the scheduler. To achieve this some locking
primitives are modified together with some slight adaptation of the interrupt
handlers. In the result the scheduler is called more often and can faster react
to a pending rescheduling request. In [7] some measurements are done which
confirm the improved scheduler latency.

Even though the patches are relatively small and good to maintain, the inclu-
sion into the Linux kernel’s upstream was delayed until version 2.5.4 in 2002.

2.1.3 The Low-Latency Patches

The second approach which was presented by Ingo Molnar in the year 2001
tries to attack the response time problem from another direction. He examined
the existing source code looking for long time running uninterruptible code
blocks. The goal was to break this blocks into smaller chunks by explicit calls
to the scheduler after some amount of work is done. The original task would
be resumed at the interrupted position when the scheduler comes back later.
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1 void prune_dcache (int count) void prune_dcache (int count)

2 | {

3 DEFINE_RESCHED_COUNT;

4 redo:

5 spin_lock (&dcache_lock) ; spin_lock (&dcache_lock) ;

6 for (;;) { for (;;) |

7 if (TEST_RESCHED_COUNT (100))
8 RESET_RESCHED_COUNT () ;

9 if (conditional_schedule_needed())
10 {

11 spin_unlock (&dcache_lock) ;
12 unconditional_schedule () ;
13 goto redo;

14 }

15 }

16 /% prolonged work =/ /* prolonged work #*/

17 } }

18 spin_unlock (&dcache_lock) ; spin_unlock (&dcache_lock) ;

19 } }

Figure 2.1: Introduction of an explicit preemption point (in fs/dcache.c).

The most popular example of such an explicit preemption point is shown
in Figure One may notice that the test for the rescheduling condition is
enveloped by a test of the iteration progress of the loop. This is necessary to
avoid the so called “live locks” which may occur on heavy system load. Then
the rescheduling condition would almost be true resulting in a loop which is
solely interrupted but does not do any work. With the test of the iteration count
at least a minimal progress of the intended work is assured.

Compared to the former one, this patch seems to achieve better results as
shown in [7]], too. Even though, the concept of the low-latency patch is simple,
the main work has to be done during implementation. Firstly, potentially long
term running code blocks have to be identified and then it has to be examined
if an explicit preemption point could be safely inserted.

The official inclusion of this patch set was delayed for a long time, too.
Finally they got integrated into kernel version 2.6.11.

2.1.4 Final approach: full-preemptibility

The two patch sets which were presented above improve both the kernel re-
sponse times when applied independently. It was also possible to apply both
patches in common which is actually true for kernel versions greater than 2.6.11.
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However, the kernel can not yet be called an RTOS kernel as some important
RTOS-specific features (e.g. priority inheritance) are still missing. Also the
kernel is still not fully-preemptible as interrupt service routines were not yet
preemptible.

It was Ingo Molndr again who presented a solution. This new patch set is
called “preempt-rt” standing for “real-time preemption patches”. A subset of
this patch set was already integrated into kernel version 2.6.18. However, it is
still under development.

The final goal of this work is a full-preemptible kernel and therefore a fully
deterministic scheduling behavior. This shows that major attributes and fea-
tures of a RTOS are slightly integrated into the Linux kernel’s upstream. So it
could be expected that the vanilla kernel will play an increasing role in the
real-time market.

2.2 The Real Time Application Interface

2.2.1 Principles

The Real-Time Application Interface (RTAI) is not a standalone RTOS. It is
rather one of the efforts to enhance the Linux kernel with hard real-time capa-
bilities.

RTAI was developed in Italy in the Dipartimento di Ingegneria Aerospaziale
at Politecnico di Milano. The project evolved from former real-time experi-
ences of the group around professor Paolo Mantegazza. Their previous work
was called “PCDOS-DIAPM-RTOS” standing for an RTOS running in 16-bit
real mode of Intel compatible standard PCs. For the transition to 32-bit pro-
tected mode the group evaluated several approaches and systems which should
provide a new basis for the 32-bit code base.

Around the same time, a patch for the Linux kernel was presented which
added elementary support for real-time tasks. This RTLinux patch was devel-
oped at the New Mexico Institute of Mining and Technology by Victor Yo-
daiken and Michael Barabanov [9]].

Using this patch, Mantegazza and his team discovered that an own imple-
mentation was needed due to bad performance. As a reason for this bad perfor-
mance the so called “one shot mode” was identified. In middle of April 1999,

"“Vanilla” kernels are the official Linux kernels released from [8].
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User-space
tasks RTAI kernel tasks
Kernel
threads
Scheduler maann::cr);Zn " IPC
Linux kernel g
RTAI HAL
Root domain RTAI domain
ADEOS IPIPE
Hardware
(CPU / Peripherals / Memory)

Figure 2.2: Stacked layers in a Linux/RTAI system.

the first version under the acronym RTAI was finally released. Meanwhile,
the project is not solely a research work but a distributed open-source commu-
nity project and a widely used real-time distribution. More of the history of
the project can be found in [10] and an overview of the various Linux based
real-time distributions and their mutual influences is given in [11].

As already mentioned the RTAI concept bases on the “kernel dualism™ ap-
proach. For this, a hardware abstraction layer (HAL) is used. This layer is
inserted between the real hardware and the Linux kernel and covers in sub-
stance only the interrupt system. Figure [2.2]illustrates the stacked layers in a
Linux/RTAI system. The idea behind such an abstraction layer is that deter-
minism of a scheduling algorithm can only be achieved when full control over
the interrupt system is available. This is explained in the following subsection.

Furthermore RTAI comes with a separate scheduling algorithm which en-
ables the resulting system to run tasks which are completely independent from
the Linux kernel. The RTOS base is completed by a real-time aware mem-
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ory management and some inter-process communication (IPC) tools. These
concepts are also introduced in the following paragraphs.

2.2.2 The interrupt pipeline

The interrupt pipeline, in short IPIPE, is the core of the two-kernel strategy.
What is called kernel depends on the used definition. From my point of view
the resulting combination does not add up to independently executable in-
stances, apart from the fact that the original Linux kernel will do without the
IPIPE system. However, the ADEOS (Adaptive Domain Environment for Op-
erating Systems) project from which the IPIPE system originates refers to the
“ADEOS nanokernel beneath the Linux kernel” [12]. In fact, it neither man-
ages other resources than the interrupts nor does it provide any inter-domain
communication facilities.

The basic idea of the ADEOS interrupt management consists of virtualizing
all available interrupt sources and introducing some additional “virtual” inter-
rupts. This means that all hardware interrupts are caught by the ADEOS layer
and translated into interrupt events. Therefore ADEOS groups the hardware
interrupt access into the so called domains of different and fixed priority.

The code which is actually inserted in the Linux code base modifies Linux’
original interrupt management to handle these new interrupts events. The
Linux system is therefore migrated into the root domain which is able to open
up further ADEOS domains. This is used by RTAI's hardware adaption layer
module rtai_hal which spans a second domain during initialization. RTAI do-
main’s priority is higher than that of the root domain.

The priority of the domains are used when dispatching a hardware interrupt
source. As every domain is allowed to register an interrupt handler within the
ADEOS system for every available interrupt source it is not guaranteed that it
will be called at all. When an interrupt event occurs the domain list is processed
in order of decreasing priority which means that a registered interrupt handler
of a high-priority domain is called first. Dependent upon its return value and
the corresponding domains configuration it is decided whether the “lower’ in-
terrupt handlers are called or the event is not further dispatched. Hence the
name interrupt pipeline.

With RTATI’s higher priority it has full control over all available interrupt re-
sources and can decide which interrupts are passed to Linux. It is also possible
to stop the pipeline. Then no interrupts are passed at all to lower domains. The
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handlers of the stalled interrupts are called soonest when the current domain
restarts the pipeline.

As already remarked, both the original Linux domain and RTAI’s domain
run in the same security level of the CPU 1i.e. ring level zero which is called
“kernel mode”. In this mode all instructions of the CPU are available and the
code executed in this mode has full access to the hardware. That means that
Linux kernel code could easily circumvent the restrictions imposed upon it by
directly interfering in the interrupt handling e.g. by clearing or setting the
global interrupt flag of the CPU. The cleaner and therefore compatible way of
dealing with hardware interrupts is to use the provided macros in the source
code. These are subject to be changed by the ADEOS patch and will be re-
placed with safer code which maps the desired functionality to the hardware
abstraction layer. So the Linux sources will be turned into a well behaving
team-mate in the system.

2.2.3 Scheduling

When introducing new real-time tasks there must be a possibility to manage
these new tasks. The Linux kernel would provide some data structures, ma-
tured task management code and a scheduler which operates on these data
structures. However, the scheduler is/was not suitable for real-time tasks. Ad-
ditionally, it is a very complex system so any modification would have been
hard to maintain. Thus RTAI implemented the needed data structures and code
parts itself not to be restricted to the limited capabilities of the Linux scheduler.

Nowadays in recent RTAI distributions, the scheduler is available in two “in-
carnations’: the first one is built as a module called rtai_sched, the second one
can be found in rtai_lxrt. The implementation of both modules is almost the
same, only the type of objects which can be handled is different. The later
scheduler is provided for user-space based real-time applications. These appli-
cations are mainly used while developing and they ease this process since user-
space debugging can be used. The first module is only capable of scheduling
RTATI’s own lightweight tasks which use the kernel mode only. This module
will be used in LRTAI

The scheduler’s implementation is almost platform-independent - only a few
parts are done in assembler e. g. the task switch. The two mentioned incarna-
tions arise when toggling a flag at compile time. The standard build system
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compiles both modules by default. The generated kernel modules contains ad-
ditionally almost all functions of the RTAI API. Only the memory management
and inter-process communication facilities are provided by their own modules
as described in the following sub-sections.

2.2.4 Memory management

To fulfill the hard timing constraints of a real-time system, RTAI comes also
with its own memory management module. This is necessary as Linux, being
a general purpose operating system for desktop and server system, implements
oppositional design goals, at least partly. For example Linux tries hard to ful-
fill a memory request for an application. Therefore it can be configured to
swap memory to disks. Another option was to reduce some buffers which had
been grown when free memory had been available. In the result, the process
requesting memory could be sent to sleep until the allocation could be success-
fully terminated.

Such a behavior is not suitable for hard real-time systems. The request
should be processed in a time bounded manner so that the timing constraints
are not broken. For this RTAI implements its own memory allocator which
bases on the algorithm presented in [[13]].

However, the allocator could not simply distribute memory. As the RTAI
subsystem is usually loaded after the Linux system is already up and running,
the Linux memory management has already grabbed all available memory.
Therefore RTAI must firstly request some chunks of free memory via Linux’
API. This is done for example when the rtai_malloc module is loaded. It re-
quests a configurable amount of memory which forms a global heap and can
be used later in a time bounded fashion as described.

To avoid any further negative influence of Linux’ management, the allocated
pages are usually locked which means that they are not considered for being
swapped out to disk. This applies at least for the user-space parts of a real-time
application. The kernel mode real-time tasks uses either the kmalloc and/or
vmalloc kernel functions to preacquire some memory which is later converted
into a real-time aware memory heap or they use the memory API of RTAI
directly. In the second case the global heap is used actually. But in both cases
Linux kernel memory is used, so there is no need to lock these pages to prevent
Linux from interfering as kernel memory is never swapped to disk. However,
the pages are still marked as reserved.

10
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In the current RTAI distribution, the rtai_malloc module is of minor impor-
tance only. The reason is that a second implementation for a global heap is
available in the rtai_shm module. This module was originally intended to only
provide shared memory capabilities but by sharing the memory segments with
unique identifier the behaviour of a global heap could easily be emulated. For
new applications the documentation suggests to solely use the methods pro-
vided by the shared memory module. This is because of the symmetrical API
which became available for user-space tasks during the transition to support
hard real-time aware user-space applications.

However, as the shared memory module uses the kernels page (re)mapping
infrastructure, the functions “are better assumed as not affording real time per-
formance” as stated in [[14]]. Therefore for LRTAI the rtai_malloc will be pre-
ferred for providing memory services.

2.2.5 Additional features

The already presented modules only provides elementary functionality for real-
time applications. Beside the functions which make the virtualized interrupt
system available, the RTAI distribution consists additionally of a few further
modules which expand the described base system by some inter-process com-
munication facilities. The modules which are to be used can be chosen at
compile time.

In detail this modules are (non-exhaustive list):

 rtai_bits
With this module it is possible to use compound synchronization facili-
ties which base on logical AND/OR operations executed on 32-bit vari-
ables. This functionality is often referred as flag or event handling. The
difference to semaphores is that signaling depends not only on a single
value but on a bit combination.

e rtai_mbx
In this module some mailbox related functions are implemented. This
could be used to pass messages of arbitrarily size between two processes.

* rtai_msg
The module implements real-time aware message handling functions.

11
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* rtai_sem
This module contains RTAI’s semaphore and spinlock implementations.
The RTAI user manual [[14] explains:

A semaphore can be used for communication and synchro-
nization among real-time tasks. [...] A spinlock is an active
wait synchronization mechanism useful for multiprocessors
very short synchronization, when it is more efficient to wait
at a meeting point instead of being suspended and then reac-
tivated, as by using semaphores, to acquire ownership of any
object.

2.3 The Linux kernel build system

The Linux kernel is distributed as a so called “tarball” which can be down-
loaded from The Linux Kernel Archives [8|]. After unpacking, the build system
of the kernel will assist to turn the source packages into something useful 1. e.
to compile the kernel.

Therefore the build system has to address several points. First, it is the “face”
of the kernel sources which is seen by a user. A person is considered as a user
when he/she solely wants to compile a recent kernel for his/her Linux distri-
bution but not actually take a look into the kernel sources themselves. Such
a person needs an interface to choose between the many subsystem modules,
drivers and other features. This interface should be reasonable easy to use i. e.
it should guide the user and prevent incorrect use.

The second target group are the developers who actively work with the ker-
nel sources e. g. by maintaining a subsystem or device driver. For these people
the build system should provide rich functionality to ease their work.

The process of building a kernel can be divided into two parts. The first part
consists of the configuration step. As the kernel comes with lots of drivers and
as the subsystems are highly modularized, it can be freely chosen which of the
features should go into the static kernel image, which ones are built as kernel
modules for dynamical loading at runtime and which features are not needed
at all. After this first step, the second one is executed which finally compiles
all source files and links the object files together.

12
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2.3.1 Configuration

The process of kernel configuration is usually initiated by running one of the
“make {,menu,x,g,old,rand,def,allmod,allyes,allno}config” commands where
the first four targets will give a different (graphical) user interface and the later
ones differently preset the configurable items.

Linux Kernel vZ.6.17 Configuration

Arrow keys navigate the menu. <Enter> selects submenus —-->.
Highlighted letters are hotkeys. Pressing <¥»> includes, <N> excludes,
<M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </>
for Search. Legend: [#] buile-in [ ] excluded <M> module < >

Syrmetric multi-processing support)
ubarchitecture Type (PC-compatible) --—->

DDDDDDDD family (586/K5/5x86/6x86/ 6x06MK) -——
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Figure 2.3: A “make menuconfig” provides a dialog based kernel configuration
for choosing between various features and/or for tuning parameters.

Each configuration item has a data type which defines which values the item
can hold. The most important types are “int”, “bool” and “tristate” where the
last mentioned will accept the values “n”, “y” or “m”. This is usually used to
decide whether an item should be included statically in the kernel image (“y”)
or if it should be built as a loadable module (“m”). A value of “n” indicates
that the feature behind the item is not used.

The kernel build system knows which configuration items are available by
inspecting the various Kconfig files spread over the source tree. To keep the
overview, the items are grouped into menus at different levels. Since some
modules (this is true for the statically included ones too) require the presence
of services provided by other kernel parts, a dependency information can be
associated with each item. The build system evaluates these dependencies and
adopts the configuration dynamically if changes are needed.

The result of the kernel configuration is finally saved in $( KERNELOUTPUT)/-
.config. In the further build process this file is transformed in a header file
which can be included in the C source files and it is split into multiple small
include files which serves for easier dependency tracking.
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2.3.2 Makefiles

The kernel build system relies heavily on GNU’s make tool which can usually
be found on every Linux installation. This tool assists larger projects by pro-
viding build dependencies so that it can determine automatically which pieces
of the sources need to be recompiled if something changed. The needed infor-
mation is given in the so called makefiles. It is also possible to define macros
and variables which are evaluated at runtime.

To support kernel developers and to keep the complexity of maintenance as
low as possible, the kernel build system uses such makefiles to implement a
powerful framework. Thus it can be achieved that when adding new features
only a few lines must be added to the corresponding makefile.

Also the kernel configuration is included and can be referred to. So it is
possible to selectively compile the wanted features and avoid spending time on
compiling stuff which will not be used. This speeds up the kernel build time.

Important to know is that the build system uses the makefiles in an inconsis-
tent fashion. As the kernel sources are split over multiple directories there are
potential problems with resolving build dependencies, see [15] for details. A
solution for this problem is to generate a big virtual makefile which includes
the makefiles of lower level rather than to descend into lower level with new
makefile processes. Linux’ build system mostly uses the virtual makefile ap-
proach, however, some targets are defined explicitly and launch new processes.

These internals are hidden from a user who initiates the whole process by a
simple/single make zImage or make bzlmage call.

2.4 RTAI’s build system

RTATI’s original build system is tricky. It successfully combines the most pow-
erful features of two worlds, namely the intuitive user-interface and depen-
dency system of the kernel build system and the powerful host tool chain which
is provided by GNU’s autoconf/automake/libtool system. This complexity was
necessary to fulfill the multiple requirements e. g. a GUI based configuration
system, cross compilation support and a reliable host feature detection. Fur-
thermore, RTAI supports the C++ programming language for its applications,
whereas the original kernel code is restricted to be written in C and assembler.

Building the RTAI distribution is very similar to building a kernel. First, the
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vanilla kernel sources has to be patched to include the ADEOS IPIPE. This
patch is included in the original RTAI tarball and has to be applied before
configuring the kernel. The modified and added parts integrates smoothly in
the remaining system. No special care must be taken by users so that thereafter
the kernel could be compiled as usual i. e. first the configuration step, followed
by the actual build.

When the kernel build is finished, for RTAI a similar configuration step can
be run. In this stage a configuration .rtai_config is generated which is RTAI’s
counterpart of Linux’ .config. But RTAI’s build system passes this file to au-
toconf which finally creates rtai_config.h a header which contains the whole
configuration and is therefore included in nearly every source file. Also the
makefiles for the RTAI modules are generated during this stage.

2.5 Patches

Among many other things, the word “patch” has the sense of being a form of
source code modification. Usually intended to correct small errors in software
systems, the patch utility is somewhat “misused” in open-source communities.
Here patches are also used to distribute significant changes in the software as
already shown in[2.1.2land 2.1.3]

A patch file can have various layouts. The most useful layout is where the
actual modifications are enveloped by some lines of the original context. An-
other layout carries only the line number as a hint, beside the information on
what should be replaced and where and by what.

Using a patch instead of distributing modified copies of the original work
has some advantages. First, though the patch may carry significant changes,
the modifications to the source code are usually small. So resources are saved
during transmission and while archiving. Secondly, patches tend to be easy to
maintain. For example when reducing a function to a stub by inserting prepro-
cessor directives, only the header and the tail of the implementation has to be
modified, the actual implementation does not matter. A patch which consists
only of the modification and a few context lines would also apply to a function
where the inner implementation has changed completely. Thus a patch can
often be used with subsequent software releases too. An adaption is only nec-
essary where changes directly conflict or in cases where the original changed
significantly.
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2.6 Other related work

As already mentioned, RTAI was only one approach of enhancing Linux with
real-time capabilities. The most competitive solution was RTLinux which was
also mentioned above. Originally developed at the university of Socorro, New
Mexico (USA), the development was soon migrated to a newly launched com-
pany. As a result, the code was available as a proprietary commercial product
and a free open-source variant. The later is also known as RTLinux Free or
more specifically as RTLinux GPL and is a community supported project.

It was already mentioned that RTAI was influenced by the work which is also
the base for the project. So it does not surprise that the same kernel dualism
approach is used here too. However, both projects were developed indepen-
dentlyE] which in the meanwhile resulted in drifting apart. This can be verified
by the different application programming interfaces of both projects.

In the year 2003 a work similar to this thesis was presented for the RTLinux
GPL project. It was published by the group around Alfons Crespo at the Uni-
versidad Politcnica de Valencia, Spain [16]. The work presented a porting of
RTLinu a bare machine, called Stand-Alone RTLinux-GPL (SA-RTL). Here
too, the intention was to create a real-time kernel which is suitable for systems
with low resources.

The work was done by an incremental code migration from the RTLinux tree
to the SA-RTL code base. Though many lines of code were directly transferred,
the original Linux identity, however, was completely eliminated from the new
system. The final system provides solely the RTLinux API. Additionally, a
new multi level memory protection scheme was introduced. With that, it shall
be possible to protect not only the core RTLinux executive but also the mutual
real-time tasks. The implementation of this protection scheme is achieved with
very low overhead.

In autumn 2006 the successor of the previous work was presented by almost
the same group. The new project was called “Embedded RTLinux” [[17]. In the
meanwhile, some drawbacks of the original SA-RTL implementation occurred
and this new approach tried to solve these problems.

The problems identified were:

2If this is/was possible at all as both projects know of each other.
3 Actually, RTLinux GPL. The word “RTLinux” always refers to RTLinux GPL in this work.
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* The compatibility of SA-RTL is limited to source level. This means that
the source code of the desired RTLinux application has to be available
and it must be recompiled for use in SA-RTL. Binary only applications
will not run in the system.

* The maintainability of SA-RTL’s code base. As already mentioned, SA-
RTL was created by copying code from a specific version of RTLinux-
GPL. This approach did not allow it to stay always synchronized with
RTLinux’ upstream. The result was complicated support and increased
porting efforts with every new release of RTLinux.

The new Embedded RTLinux tries to solve these problems. Instead of com-
pletely eliminating the Linux system, it is just replaced with a thin software
layer. Thus it is possible to run an unmodified version of RTLinux on top of
this thin layer, achieving the desired binary compatibility.
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Chapter 3

Design

The goal of this work is to create a new real-time operating system kernel
which is suitable for embedded systems with low resources. This kernel has to
provide the RTAI API as an interface between applications and the system. In
the task formulation, some further development goals are stated:

* Small size of the resulting kernel image.

Embedded devices often do without large hard disks. The reasons for this
are manifold. Usually normal hard disks are not robust enough to pro-
vide continued service under the environmental conditions in which the
embedded system is installed. Otherwise there is often simply no need
for large data memories and so using hard disks for bootstrapping only
would be a waste and increases the price of the whole system. For this
reasons flash memory is the most commonly used solution today. Being
mechanically resilient, it also offers a good trade-off in cost-benefit con-
siderations: Larger flash memory is available and relatively inexpensive
today.

Regardless of this, more memory always implies a higher power con-
sumption. So the overall embedded system profits when the operating
system is already designed economically.

* Clear and efficient design.

This goal is hard to achieve as there is no explicit metric given. For ex-
ample, it depends usually on the subject’s previous knowledge to distin-
guish between a “clear” and “unclean” design. However, implicit metrics
are used for verifying the results. Since the Linux kernel is open-source,
its complexity can be studied by everyone, so it serves as a base. The
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result’s complexity should not exceed this upper bound while being less
complex is acceptable.

A metric for the efficiency is given by the comparison of the scheduling
latencies. The values of the new RTOS should not be worse than those
of an established Linux/RTAI system. Therefore measurement should be
done to confirm this thesis.

Broadly, there are two possible approaches of dealing with this task. The first
one is to take the existing RTAI code as a base and looking through the sources
which (global) variables and data structures respectively which functions are
used. It has to be examined if these are relevant for functionality on the given
platform. In this case these have to be reimplemented later and pushed un-
derneath the RTAI system. Otherwise they can be replaced with a simple stub
function or they could be simply dropped. Then the referring parts of the ex-
isting code need probably to be adopted to fit the new base system. While this
approach gives the possibility to completely ignore the previous base system
and therefore allows an entire redesign of the new code, this is at the same time
the main disadvantage: The whole new code has to be written from scratch.
This is not a problem by itself, however it could negatively influence the ac-
ceptance of the project by the industry which prefers matured and well-tested
code to save cost-intensive test cases.

The second way takes an established Linux/RTAI system as a base and then
cuts the unneeded parts away. The existing code has to be reviewed also to
detect dependencies on functions and global variables. But this differs from
the first approach in so far as it tries to reuse as much as possible the existing
code and base system. Particularly, the design of the taken over (sub)systems is
left unchanged or only minimally adapted. In this respect this approach should
guarantee or improve the acceptance in comparison to the first one. At first
sight it looks easy to discover which parts of the code are needed and which
ones can be dropped since the RTAI code is very modular and well-structured.
The core RTAI modules mutually depends only weakly - and mainly in a linear
fashion i. e. one module uses only services of the other one and not vice versa.

However, the Linux part has to be analysed as well. And this code is not
as well structured as it could and should be: When deselecting e. g. the sysfs
feature via the kernel config system at compile time, there are still many code
references to it and several data structures are included which are unused in
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the end. This is because the kernel is not fully designed for systems with low
resources, and at a normal system a few bytes of code and data more or less do
not matter in the memory footprint. For this reason, it is necessary to review
the whole Linux sources, moreover, there are many features and subsystems
which cannot be deselected by the original configuration system at compile
time. These code parts have to be dropped manually and the remaining refer-
ences has to be deleted or replaced with stubs.

In this work the second approach was chosen for the following reasons.
Firstly, the task formulation suggests this way indirectly by “eliminate the
Linux subsystem”. Another reason is already given above: The results of this
work should not remain a proof-of-concept implementation but be already us-
able by real world applications. In addition it is deemed that maintaining a
complete new operating system kernel, which was the result of the first ap-
proach, would require much more time and known-how as the maintenance of
some patches for the established Linux system. And finally there are many
concepts already implemented which seem to be optimal for the resulting sys-
tem and a new OS kernel from scratch would be like reinventing the wheel.
These concepts are briefly discussed in the following sections.

3.1 Taken over concepts

3.1.1 Binary image layout

Usually, when creating software the processor instructions are not put in bi-
nary form into a file but a compiler collection i. e. a preprocessor, a compiler,
an assembler and finally a linker are used. This tool chain translates the human
readable source files to a binary representation which is executed on the target
CPU. For the Linux kernel, most of the source code is written in the C program-
ming language which is highly portable. Only for some hardware-dependent
low-level functions (or for performance reasons) is an assembler used. To pre-
serve readability the sources are split over multiple files, so that all parts have
to be merged together finally. This step is done by the linker. The linker output
does (usually) not only consist of native processing instructions but is rather
a meta format containing additional information which is needed on the target
OS to load the application. For the Linux kernel, the Executable and Linking
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Format (ELF) is used as it is the default binary format for applications on most
UNIX based operation systems and on Linux itself.

An ELF file can consist of several sections, mainly a text (code) section, a
data and a so called BSS (Block Started by Symbol) section. Additional sec-
tions may be included e. g. symbols for debugging or comments. The linker
creates an ELF file upon the data found in the used linker script, which de-
scribes how the sections of the input files should be mapped into the output
file and how the memory layout of the application looks like. Since the Linux
kernel is not a common application, this meta information is not needed and so
it is discarded in the further build process. However, the layout of the sections
is kept in the final binary.

To run the Linux kernel on the target machine, the image has to be loaded
into the RAM and then control needs to be passed. On a PC architecture,
the boot process has many historical “vices”, the important ones are described
later in detail. In this context, it is sufficient to mention, that the Linux kernel
was traditionally prepended by a small boot sector and a loader which puts the
remaining parts of the kernel into memory.

In Figure [3.1] a simplified overview is given of the various files generated
during the build process and their binary layouts for the IA-32 architecture.

The image layout mainly affects how bootloaders deal with the image. Nowa-
days, there exist lots of bootloaders for various environments. Many of them
have built-in support for the Linux kernel. This is necessary because the boot-
loader is able to pass some additional information to the kernel during the
boot process. As this is also a wanted feature of the new LRTAI system (cf.
section [3.1.3)), the “backup strategy” implemented in nearly every bootloader
could not be used. This strategy of handling unknown “boot objects” involves
loading the whole image into memory and jumping to the first address where
the image was loaded. Booting this way, no information could be passed to the
kernel. Actually the kernel would not boot at all, since the included boot sector
prints only a notice that booting without a loader is not supported anymore.

For reaching the mentioned design goal, the bootloaders ought to be ex-
panded to support the new LRTAI kernels. Even though, many of the poten-
tially used bootloaders are open source and could be adopted, it would be easier
to use the existing support for Linux kernel and the way through which param-
eters are passed. This results in keeping the major image layout for LRTAI so
that bootloaders would detect a standard Linux kernel. This way, all familiar
bootloaders would be able to bootstrap the LRTAI system as they can use their
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execption kernel symbol .. . initcall
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[ ] non-compressed text/data [ ] initsections [] compressed text/data

Figure 3.1: Simplified overview of vital file layouts on IA-32.
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existing knowledge to determine e. g. the entry point.

3.1.2 Image compression

As the image size of the Linux kernel increased continuously over time by
added features, some size constraints - notably those of [A-32 - hit and limited
the static core kernel. Compression of the image was chosen as the way out.
The used compression algorithm is zlib [18] by Jean-loup Gailly and Mark
Adler which was originally intended for compressing pictures.

Using image compression the kernel should be able to decompress itself and
this requires a small decompression stub in the final image. Of course the com-
pression can only be justified when the added overhead plus the compressed
part is smaller than the uncompressed piece of code.

As the zLib implementation is not an in-place algorithm the target system
must have enough memory to hold both the compressed and the uncompressed
images. On systems with extreme low resources this could be a problem as
described later in section4.3] This could be a potential argument against using
compression at all, however, it remains for the developer to make this decision
and to choose the preferred or necessary variant.

Today there are already some bootloaders which natively support the kernel’s
compression. Then the bootloader itself decompresses the kernel image to its
final location, usually by reading the data from a flash memory directly, so that
it is not necessary to have both images in RAM.

Additionally when using compression, the booting time of the system is af-
fected. While a smaller image results in loading less blocks e. g. from a disk
and should speedup therefore the boot process, a low-performance CPU could
spend more time in decompressing the code. On modern CPUs the decom-
pression should be a negligible factor, however the time needed for booting the
system can carry weight for an embedded system. Though this time depends
on various conditions, it is still possible to measure it for a specific system as
it should remain constant.

For LRTAI, support for image compression is desirable since it allows the
user to burn the image into a small flash chip instead of using large hard disks.
Even though larger flash memory chips become available, a small footprint of
the base system leaves a margin for more user-defined data or functionality.

Another option could be to include both a “live” and a “rescue” system in the
same flash memory. This could be used to provide the user software updates
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which overwrite the live area while keeping a fail-safe variant in another flash
segment. If an update fails or the new system is flawy the user could easily
activate the backup system e. g. by pushing a reset button while powering on
the device.

3.1.3 Kernel command line

As already mentioned above, the original Linux kernel has the ability to receive
information during boot process from the bootloader and/or thereby from the
user itself indirectly. This is mostly used to pass (semi-)dynamic configuration
information, preventing the user from compiling the whole kernel a new when
only some minor changes are needed.

This interface is represented as a simple command line string, which can be
filled with several tokens and/or key-value pairs. These arguments are usually
preconfigured in the bootloaders configuration. Additionally many bootloaders
permit the user to modify this string. Disclosing it finally to the kernel is done
by writing the memory address of the string to a well-known memory address
inside the loaded kernel image. Then while booting, the kernel iterates over
the elements of the command line, invoking a callback function which was
registered at compile time for each possible element. Many callbacks simply
set an internal kernel variable to a new value, but also complex functions are
possible.

Since this concept is quite simple and anyhow powerful, it is kept in LRTAL
Additionally, as it is widely supported by bootloaders, it guarantees the user
highest flexibility.

3.1.4 Initcalls

During kernel configuration at compile time, the user has for nearly all features
the possibility to choose between building it as a dynamically loadable kernel
module or linking it statically into the kernel. Mostly, a feature encapsulates a
specific subsystem e. g. a hardware driver. This often needs an explicit initial-
ization procedure e. g. resetting the corresponding hardware device.

When the feature is inserted into the kernel as a module at runtime, the kernel
uses a well-known interface to invoke the module’s initialization function if one
is defined. The author of the module/feature can use predefined macros for this
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in the source code, providing a kind of abstraction layer so that the real kernel
implementation could change.

Actually, this source level abstraction for kernel modules is also used when
linking the module statically into the kernel. Then the mentioned macros
are redefined so that every occurrence adds an entry to a so called initcall
table. This initcall table is simply a list of pointers to initialization func-
tions. These are grouped by functionality or precedence into separate subsec-
tions. Currently, there are seven predefined subsections, namely core_initcall,
postcore_initcall, arch_initcall, subsys_initcall, fs_initcall, device_initcall and
late_initcall. During boot process, the initcall table is processed in order, start-
ing with the core initcalls. Ordering inside the subsections is determined by
link order i.e. a module which is referred to later in the makefiles—and there-
fore linked in later—is also initialized later.

Even though, many original subsystems of Linux are dropped for LRTAI
and hence the remaining ones could be initialized by hand, this concept is
overtaken to LRTAI. This is to achieve source code compatibility to existing
RTAI modules which usually make use of the described macros. Since the
module support is dropped for this first LRTAI version, the macros expands to
the initcall table implementation as described. More exactly the usually used
module_init translates to a device_initcall. That will later be of interest when
the memory allocations are discussed.

3.1.5 Initialization memory freeing

In Figure an area in vmlinux 1s highlighted. In this area the linker places
initialization data and functions which are explicitly marked by the authors in
the source code. The motive is that such marked functions or data are solely
used during the boot process. This could be e. g. the initialization function of a
driver. After execution of the code, it is not needed anymore, could be dropped
from memory and the resulting free space could be given to the memory man-
agement.

Especially on system with memory constraints, such a feature is very use-
ful. Since LRTAI is already stripped down to a minimum, there are only few
functions remaining which can be freed after usage. Nevertheless, this feature
is implemented. This is to support the users when they need or expect such
behavior and to optimize the memory footprint of LRTAI.
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3.1.6 Memory management

Every operation system needs to manage the available memory. Usually, this
is done with multiple layers or levels for simplicity. On a standard Linux/RTAI
system, there are up to three memory subsystems involved before a real-time
application receives its requested memory block.

3.1.6.1 Bootmem memory allocator

The closest level to the hardware is the memory page management where whole
physical pages are marked as used or free. Since a page is typically 4 KiB on
[A-32, it would be a waste when an application tries to allocate a few hundreds
of bytes and is given a whole page. So an additional level of memory allocation
is introduced, the SLAB (or especially as replacement for embedded systems:
SLOB) allocator. This second stage is described in the following subsection.

Since the original page management of Linux is quite complex and strongly
interwoven with the remaining memory management and therefore the file and
file system handling code, the decision was to replace and simplify the whole
system.

Fortunately the original Linux comes with an alternate page management
system which was designed to be used solely during booting: The bootmem
allocator. This is a small bitmap based allocator, which will completely satisfy
our requirements for lowest-level allocations. Originally the code is marked to
be freed after initialization completes (see above), so it requires some changes
to fit for the new LRTAI system.

Also the code assumes that is running solely on one CPU as SMP support
is normally not yet enabled at the stage when the bootmem allocator is used.
To prepare LRTAI for SMP—in the first implementation SMP support will not
yet be included—the allocator is also enveloped with spinlocks to prevent con-
current modifications of the internal data structures by multiple threads/tasks.
When compiling for uniprocessor systems, the kernel’s macro magic will opti-
mise the calls to simple interrupt preventing implementations, so there will be
no overhead introduced.

3.1.6.2 The Nano SLOB allocator

The second level of memory management is normally done by the SLAB al-
locator, originally developed by Jeff Bonwick for the SunOS 5.4 kernel [20].
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Since this allocator is quite complex, a replacement exists. This replacement
is the so called SLOB system, which can be chosen at compile time. It was
designed to be used on embedded systems which do not need the full power of
the SLAB system. As it provides SLAB’s interface, it replaces the traditional
SLAB system silently.

The SLOB allocator serves as a base. Since it requires the original page
management by default, it has to be adopted to use the bootmem allocator
which will manage the physical free pages not solely while booting. Addition-
ally some functions concerning cache management are dropped since these are
mainly needed by device drivers and other kernel subsystems which will be
dropped from LRTAL

The remaining SLOB allocator solely supplies the kmalloc, ksize and kfree
functions. It is only used during the boot process where various functions of
the original Linux kernel requires dynamically allocated memory. Another use
case is when an RTAI module desires its own real-time heap. In a Linux/RTAI
system it would allocate a chunk of memory via kmalloc and passes this block
to a RTAI function which converts the block into a real-time aware heap.

So the existence of the SLOB layer is mainly for retaining compatibility
with the described application case. The alternative choice would have been to
map the three above mentioned functions to the RTAI’s counterparts. But then
major changes to the RTAI level would have been necessary. Also the special
use case above would result to an “RTAI heap in RTAI heap” scenario, which
could potentially lead to confusion.

3.1.6.3 RTAI's own memory management

RTAI comes with an additional layer of memory management as has already
became evident. This is necessary to fulfill hard real-time constraints. Since the
original Linux system tries always to serve memory requests e. g. by freeing
unused caches, it can suspend the execution of the requesting task. However,
using this mechanisms could break the timing of a real-time application.

The RTAI module rtai_malloc bypasses these problems by preallocating
memory blocks from the Linux memory manager and by distributing this space
via its own interface to RTAI applications. To fulfill the timing constraints, it
can be forced to operate in a time bounded fashion. Thereto the used memory
heap, from which the request should be served, needs to be non-extendable.
Otherwise, on a standard Linux/RTAI system when the heap is marked extend-
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able, the allocation request can also trigger a dynamic enlargement losing hard
real-time. Although this functionality is (still) documented in the manuals,
there was no code found in the sources which provide this feature. Support
for dynamic expansion seems to be dropped silently from RTAI’s upstream. It
could be reimplemented easily with a few lines of code. But since in LRTAI
only hard real-time tasks exists which usually should not use this feature, this
is not necessary.

While configuring the RTAI sources at compile time, the user can choose
whether the RTAI module should use Linux’ kmalloc or vmalloc. The latter one
does not give any advantage on LRTAI, actually, the whole memory in LRTAI
will be linearly mapped, so that there is no difference between both variants.
For LRTAI this configuration option is therefore preselected to kmalloc.

Another choice is the amount of memory which should be preallocated from
Linux. Here the user presets the size of the global heap which is provided and
used by RTAI applications if these do not allocate their own heap. It is still pos-
sible to change this value at runtime passing a module parameter when loading
the module. By the way, for compiled-in modules such parameters can also
be set via the kernel command line. Then the parameter has to be prepended
by the modules name and a dot e. g. the parameter rtai_global_heap_size be-
comes rtai_malloc.rtai_global_heap_size. This way the user could still set the
memory which RTAI should use.

Actually, the user has to preset this value in the bootloader if he/she had not
compiled in the right value. If the compiled-in value is larger than the available
memory, the initialization routine exits with an error and the global heap is not
initialized at all. On the other hand, if the value is too small, there might be
much memory which can not be used for RTAI’s global heap. So this needs
some configuration overhead at runtime and makes this method unfavourable.

Also this initialization procedure has a further drawback. It requests the
memory from the Linux memory management in blocks of extentsize bytes.
As the default kmalloc implementation poses an upper limit of 128 KiB for
each request, RTAI uses this limit which is neither configurable at compile
time (without direct modification of the sources of course) nor at run-time. As
by definition all extents are of the same size, for small systems this extent size
could be too large and could result in memory blocks which remain unusable.

For LRTALI this initialization code has to be rewritten to eliminate this two
drawbacks or one or more new initialization strategy should be implemented.
The later approach was chosen to provide the user the highest compatibility but
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also to fit optimally to the new environment. The new implementation lets the
user to choose at compile, which allocation strategies are compiled in, and at
runtime which one is actually taken.

Actually two new algorithms are added. The first is called “greedy” as it
tries to allocate as much memory as possible from the bootmem allocator. Like
the original approach this is done in smaller or larger extents but the extent
size could also be given dynamically. The method has still the drawback that
memory requests which are larger than one extent cannot be satisfied as RTAI’s
allocation function cannot split the request over multiple extents.

A further algorithm should be provided to support such large allocations.
It is called “largest™ as it simply allocates the largest available free block in
one step. It is not divided into smaller extents but forms only one extent. The
special case where multiple large blocks of the same size are available is not
handled, even though, these could be treated as several extents. It could be
implemented easily if such functionality is needed.

As mentioned above, the user can choose between these two new algorithms
and the “traditional” one using the kernel command line. This is also used to
pass the parameters e.g the extent size to the greedy algorithm. As a default the
greedy implementation is chosen for LRTAI with an extent size of 128 KiB.

3.1.6.4 Private heaps of real-time applications

RTALI provides applications the possibility to use not only RTAI’s global heap
but also to request their own memory block which is “converted” into a private
heap. This is useful e. g. when an application exactly knows about its memory
consumption and does not want to interfere with other applications.

The normal process of registering such a private heap is to allocate a mem-
ory block of the desired size from Linux’ SLAB/SLOB system which is later
passed to RTAI. With respect of the initialization order of the embedded mod-
ules and when using a modified global heap initialization algorithm as de-
scribed above, the situation can occur that the requested blocksize is not avail-
able anymore when the application’s memory request is executed.

Without modifications to the application’s sources this problem can only be
solved by changing the global heap allocation algorithm as described or at least
restricting its “greediness”. During LRTAI’s configuration a margin could be
given which is not allocated and therefore can be obtained from kmalloc. Other
solutions imply at least slight changes in the application sources. One solution
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could be to use the global heap instead of spanning up its own. However, this
could undesirable. Another way could be to allocate a big memory block as a
whole from the global heap. This results in the heap-in-heap phenomenon. The
third variant could be to split up the memory allocation from the remaining ini-
tialization code. To that end, the order of the initcalls can be used. As described
in section [3.1.4] the module_init macro expands to device_initcall which is ex-
ecuted lately. Assuming that arch_initcall and subsys_initcall should not be
“misused”, the remaining candidate is fs_initcall. This choice seems reason-
able as LRTAI comes without filesystem support.

It has to be mentioned that a traditional kernel module should only have one
initialization macro referred to when compiling as a loadable module. So, to
achieve source highest compatibility, the second call should be hidden with
some kind of preprocessor magic. An extract of a possible implementation is
given in Appendix

3.1.7 Console output via printk

Normally, a computer system has the possibility to display errors or other mes-
sages to the user. Combined with the option for receiving user input, Linux
defines the concept of a console like many other UNIX-like operating systems
do. This console is simply a data structure with pointers to functions that will
input or output the given data. The default console usually uses the build-in
video graphics card for text output to a monitor and a directly attached key-
board for data input. But it can alternatively use a serial port, a line printer
etc.

For LRTALI the full power of this concept is not used. The main purpose is
to get messages out to an attached display. The possibility to input data via a
keyboard has to be reimplemented later as a real-time aware device driver.

For embedded devices it is not unusual to have no display attached as there
is often no need for it. For debugging purposes a serial console is often used
instead. But using a serial port is difficult on real-time systems: If using a
polling mode the system has to actively wait for all status changes. The other,
interrupt driven approach requires a working interrupt system of course and so
output would not be possible if the interrupt system is not yet started.

As default LRTAI will assume that a VGA compatible video card is installed.
Such a card has a video memory which is mapped into the I/O address range. In
text mode, writing to the screen is simply copying the data from a buffer to the
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video memory - no need for dispatching interrupts or other complex stuff. This
is used by the early vga console, which is included in the default Linux system.
But it is not activated by default, so the LRTAI version has to be modified.

On regular systems the early console is dropped as soon as the remaining
kernel drivers are initialized, so that these can overtake the management of the
console. Since there is only limited driver support for various hardware on
LRTAI and the functionality of the early vga console is sufficient, support for
replacing it during boot process is not needed and is therefore omitted.

3.1.8 Tracking time with jiffies

Keeping track of time is one of the most critical tasks in every operating system.
The Linux kernel therefore uses a global variable jiffies which is a simple 64-
bit counter. It gets increased with every tick of the timer. The time lag between
two timer ticks depends on the target platform and a configuration value set
at compile time. On IA-32 it is traditionally 10 ms, in newer kernel versions
and/or on newer systems, 4 ms or even 1 ms is not unusual.

RTALI uses this global variable in some places when it was configured to use
the Intel 8254 PIT as timer chip. Since support for APICs is not yet included
in LRTAI, the preconfiguration has to choose the 8254 code paths. Therefore
the jiffies counter needs to be included, too. The original Linux timer inter-
rupt handler is reduced to update this variable solely. This interrupt handler is
the only one which remains from the original Linux part, all other IRQs are
managed in the real-time domain.

3.2 Spurned features

As a general purpose operation system, Linux has a lot of features. Many of
them would be useful if included in LRTAI, some feature implementations are
actually required by RTAI while sharing the existing code (e.g. spinlocks).
However, including many features implies a large footprint in the end. Re-
ducing the system to fit on small embedded systems means to omit code and
functionality.

Many parts of the original Linux are not strictly necessary for an RTOS.
Especially, since the new LRTAI should only provide the original RTAI API,
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some features can simply be dropped as there is no corresponding or equivalent
functionality.

It is for this reason that, for instance, the filesystem layer can be completely
omitted. The original RTAI does not care about the representation of data on
disk or other media. It relies on the Linux subsystem to manage these tasks.
For instance, while bootstrapping new processes from loadable RTAI modules,
these modules are usually stored as a file in a filesystem. When a module
should be loaded into the kernel, it is handled like a usual Linux kernel module
which means that is is loaded by the insmod command line tool. This tools
open the file and copies the content to a memory location in the user-space.
After that, a system call is invoked to insert the module in kernel space and
to start the execution of the new code if the module provides a defined entry
point. While running this initialization code the module can fork off new real-
time processes which are subsequently managed by the RTAI domain. Thus it
appears that the RTAI API starts at process level - there are no API functions
which deal with loading or storing data on disks etc. Thus in LRTAI there is no
need for such functionality too and the code concerned can be dropped from
the project.

With dropping filesystem support, the ability to dynamically insert modules
at runtime is also lost since there is no source anymore which could hold the
modules object code. A possible solution would be to feed a module via serial
port to the system. Since a real-time aware device driver for the serial port
exists in RTAI, a serial protocol could be established between a host system
and the embedded device to transfer object code to the targets RAM. After
the transfer, the existing routines of RTAI could be invoked to initialize the
new code and to start new processes as requested by the modules initialization
procedures.

As the main focus of this work is to get a standalone RTAI system running,
the ability to dynamically load modules is considered as a feature that would
be nice to have but not strictly required. It is further assumed that the code
which is intended to run on an embedded target system is infrequently changed
and therefore can be included in the kernel image at compile time. It results
that the sources of the included code have to be available and only source level
capability to the existing RTAI projects can be achieved. Another reason for
omitting a loader is that tests of new modules could be done on normal PC
systems where dynamic loading is available. When the development process of
the module is finished, it can be ported easily to LRTAI as only minor changes
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in the core implementation are done. Thus the behaviour is nearly identical to
the developer machine when the same release of the kernel and RTAI is used.

Another topic is the device driver support in LRTAI. Since all parts of the
original Linux kernel run at the same CPU privilege level (on x86 all code in
kernel mode runs at the so called “ring 0”), all codes invariably have access to
the hardware. So, no further differentiation between core kernel parts, network
subsystem or in particular drivers can be made. This opens the possibility to
device drivers to disable the interrupt system completely on the CPU. If this
is used by a driver implementation, it would break the whole hard real-time
environment. To prevent this, all drivers have to be implemented with these
facts in mind. RTAI therefore comes with its own implementation of a serial
port device driver which is real-time aware. All other original Linux drivers
have to be audited before they could be used. In LRTAI many parts of the
infrastructure - which original device drivers are used to found - are dropped.
So they could not be taken over directly and a code review is needed. But
since LRTAI should only provide a framework which can be adapted to special
needs by its future users, such driver examinations are assumed to be done
by the users. Only the drivers for the interrupt/timer circuit are included by
LRTAL

With the omission of the remaining device driver and since the filesystem
support is dropped, the infrastructure and the need for the block and character
devices is lost too. These special filesystem nodes enable user-space applica-
tions and system tools to communicate with drivers i.e. to load and store data
and/or setting configuration values.

As can be seen from the task formulation, the “Linux subsystem” should be
“eliminated” from the project. However, an exact definition of the term was not
given so the most logical one is assumed: It is supposed that the Linux subsys-
tem covers all kernel parts which are unconditionally needed for spanning the
user-space. That means in particular that the Linux system calls (syscalls) are
no longer required since they are solely used by user-space applications. Since
the kernel subsystems are located in the same address space they can call the
requested functions directly and do not need to use the indirection of syscalls.
The implementation of the original Linux’ syscalls is usually composed of at
least two functions for each syscall. One function encapsulates the main func-
tionality and can be considered as the “worker code”, the other one is used as
the kernel-mode entry function, which is indirectly called from the user-space.
This wrapper usually checks the given arguments, calls the worker and returns

34



3.2 Spurned features

the result or error code to the user-space. For LRTAI all wrapper functions can
be dropped since the user-space is not used anymore. However, the remaining
code has to examined if it still requires some worker functions.

The Linux subsystem consists additionally of all code which handle the tasks
in user-space. This is mainly the scheduler but also the signal management or
the capability subsystem for example. In kernel mode there should not remain
any thread or activity which is not covered by the RTAI execution domain. That
means that all kernel threads and real-time applications have to be managed by
the RTAI’s own scheduler. This included all interrupt service routines with one
exception: The original timer interrupt is not migrated to RTAI and will be
executed in the IPIPE’s Linux domain.

At last, the Linux memory management is dropped. Being one of the most
significant struts which characterizes an operating system the code does not fit
into the LRTAI project. The reason for this is that the code is quite complex and
provides a lot of functionality which is not required anymore. For example the
elimination of the user-space functions which care about correct user-space to
kernel mode transition and back again 4AS they are not needed anymore. The
same applies to the ability to memory-map files. Additionally, the memory
management is strongly interwoven with the filesystem layer which is going to
be dropped. These dependencies result from performance demands which are
put on a general purpose operating system like Linux. However, for a tight and
small real-time kernel this over-fulfills the requirements.

Since a working memory management is fundamental for an OS, Linux tries
to set it up as soon as possible while booting. Before this setup process finishes,
it uses a boot time configuration which has less functionality and is limited to a
total of 8 MiB RAM. Less functionality hereby means, that the page table are
statically initialized with a linear mapping between the available memory and
the existing address space. However, this configuration is for LRTAI sufficient
and so it is not replaced with another memory management system but it is
kept after the boot process.

Some code parts which relay on the mapping or unmapping of memory
ranges have to be dropped in consequence. Since this affects mainly the func-
tions which try to work-around some hardware flaws, this is of no further inter-
est. For example there was a bug in the early Intel Pentium models, which can
be prevented with a special memory mappingm It is assumed that LRTAI will

!The bug is known as the FOOF-Bug. See [[19] for details.

35



Chapter 3 Design

not be used on such hardware e. g. that the hardware is operating correctly.

3.3 Merged build systems

As already described, the original Linux build system and RTAI’s uses the same
configuration system before compiling. So it seems to be the best solution to
integrate RTAI’s configuration in the existing one of Linux. But not only the
configuration stage is used, but also the complete original build system for the
following reasons:

Since there will be no user-space anymore, all real-time applications are
built-in into the kernel so the need for the user-space tool chain support has
gone. Also cross compiling support is given by Linux’ tree. The Linux ker-
nel itself comes with a lot of configurable features, changes to system would
be hard to maintain. In comparison, after stripping down RTAI to its core
elements, only a few features will remain. Since most configuration choices
come with a sensible preset and some items are hardly prechosen for LRTAI,
the need of the configuration would be only to select additional services e. g.
for inter-process communications. However, as some new configuration items
were added to be able to choose between the global heap allocation methods, a
modified version of RTAI’s configuration should be merged into the kernel’s.

The configuration items which will be newly present are now managed with
the kernel’s dynamic include system. The rtai_config.h which is normally the
central include file for RTAI applications and which is generated after configu-
ration, degenerates to a static file which holds some not yet migrated or legacy
definitions and refers for the rest to Linux’ includes.

Actually, the LRTAI will not yet be well-prepared for the most configurable
options on Linux side. For example choosing LAPIC support would be de-
sirable, however, support is not yet implemented in LRTAI. So it ships with a
sensible preset of the .config file.

For compiling the RTAI source files within the Linux tree, the required
C files are simply copied into a new sub directory. The existing Linux top
makefile has to be adopted to descend into this new directory. As the orig-
inal RTAI makefiles depends heavily on the auto-generated makefiles which
are produced by the mentioned user-space tool chain system, they cannot be
simply copied but have to be replaced. Because the kernel build system brings
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along a lot of functionality, these replacements are quite simple and often only
consist of a few lines. So it will be easy to transfer additional RTAI features
which are not yet included in LRTAI

Except the mentioned adaption of the Linux top makefile and the replaced
ones for the RTAI subtree, there should be no changes necessary. This will
keep the efforts for maintenance low e. g. when/if the system is ported to a new
kernel version.
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Implementation details

4.1 The boot process

The process of booting a Linux/RTAI system consists of a number of stages.
When the system is powered on or reset, the CPU instruction pointer register is
set to a hard-wired, well-known value and thus executing code at a well-known
location. In standard PCs this code is located in the systems BIOS, stored in
a small flash memory on the motherboard. Usually, a modern BIOS is very
flexible in the further boot process i.e. the user can choose between a wide
range of boot media e. g. floppy disks, hard disks, (USB) flash memory or even
the network. In case of booting from a disk and the decision which device is
used (if multiple ones are present in the system), the BIOS tries to load the first
sector from this device, usually 512 byte, into memory and executes this code
by jumping to the first address of the loaded sector. Since a norma]E] bootloader
does not fit into the maximum available size of 446 bytes (see Figure [4.1)), this
first sector contains the first stage of the bootloader and the code’s job is solely
to locate a further stage of the loader. This is done traditionally by scanning
through the partition table for an active flagged partition and loading a pre-
defined number of additional sectors from this partition. Modern bootloaders
(e. g. GRUB) do not rely on this partition flag but the first stage code is config-
ured statically with the sector addresses of the following code. Adhering to the
example of GRUB, this is called “stage 1.5” and implements a tiny filesystem
driver for the target partition so it varies between the used filesystems. Hav-
ing loaded that code, the bootloader has gained the ability to find its further
stage(s) and finally the kernel image etc. in the filesystem which provides a

'Menu-based or even graphical GUI
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Offset
0x200
Magic Number
(2 bytes)
0xIFE
(Primary)
Partition Table
(64 bytes)
0x1BE
Partition 4
Partition 3
Boot loader "
(446 bytes) Partition 2
Partition 1

0x000

Start (CHS) | Partition Type | End (CHS) Start (LBA) ‘ Length ‘

‘ Status

Figure 4.1: Traditional boot sector layout on a PC architecture.

larger flexibility and stops the need for updating the master boot sector if the
position of the kernel image on the disk changes.

Usually this is also used to give the user the possibility to choose between
multiple kernel images. After this selection, the kernel image is loaded into
RAM and the bootloader passes control to the kernel by jumping to a well-
known start address in the kernel image. The processor is still running in real-
mode at this stage, therefore the kernel entry has also to be 16-bit code. This
entry point is the startup function (located in arch/i386/boot/setup.S) which
does some elementary initialization e. g. tries to determine how much memory
is installed. Later, the protected mode part, which is still compressed, is moved
down in the memory. After these preparations, the CPU is finally switched into
protected mode and a startup_32 (arch/i386/boot/compressed/head.S) function
is called. This routine sets up a basic environment e. g. a tiny stack and clears
the Block Started by Symbol (BSS) area. Subsequently the underlying ker-
nel is decompressed through a call to a C function decompress_kernel (arch/-
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i386/boot/compressed/misc.c). This code is located in a small non-compressed
stub which heads the compressed part (cf. Figure [3.1). The remaining non-
compressed code just places the image at the memory location which was
chosen at configuration time. This will be discussed in detail in section 4.3
Finally, yet another startup_32 (located in arch/i386/kernel/head.S) function
is called which initializes the page tables, detects the CPU type and the FPU
and starts the paging. Then it passes control to start_kernel (init/main.c) which
runs the non-architecture specific boot routines. This can be regarded as the
kernel’s main function in comparison to a normal C program. Figure 4.2]illus-
trates an example of a boot process using GRUB from a hard disk until the call
of startup_32 in arch/i386/kernel/head.S.

As already mentioned, start_kernel is a high-level, non-architecture depen-
dent initialization function. However, its first step is to call a further high-level,
but architecture variable procedure, by name setup_arch. In this function, a
data structure containing various information about the CPU is filled. This
structure is used at multiple places all over the code as it holds, among others,
the list of features supported by the CPU. Further on, setup_arch prints the
memory map provided by the BIOS, preprocesses early command line param-
eters and finally setups the main memory. At this stage the bootmem allocator
is also setup.

Back in start_kernel, the remaining part of the command line is processed
and the trap and interrupt system is setup. After initializing the time subsystem,
which solely increases the jiffies counter, the IPIPE root domain is opened and
the interrupt subsystem is enabled.

The start_kernel function is marked as an __init function (cf. section|3.1.5)).
This means that the code would be freed after the initialization completes. So
its last call is to invoke a non-__init function, namely rest_init, which finalizes
the kernel startup. Here the already mentioned init_calls are processed and the
__init memory section is freed. After that, the CPU enters the idle loop.

The RTAI domain’s initialization is done via the initcall mechanism. As
the RTAI code was originally implemented as kernel module, the sources use
the module_init macro to mark the module’s entry functions. While linking
a kernel module statically into the kernel, this macro translates to the initcall
mechanism. While in a standard Linux/RTAI system the modules’ initializa-
tion order is determined by the order of loading the modules, the initcalls are
invoked in order of linking the module sources into the main binary. This order
can be controlled by the arrangement in the makefiles. To keep the order in
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CPU mode
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Figure 4.2: Simplified exemplary boot process on [A-32.
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comparison to a standard Linux/RTAI system, the relevant makefile was writ-
ten with this in mind. In the end, the (original) rtai_hal module is initialized
first, which registers the RTAI domain in the IPIPE system and sets up the basic
interrupt system for RTAIL After this, RTAI’s own memory allocator is installed
(module rtai_malloc). This module initializes a global heap which can be used
by RTAI applications. Finally, the RTAI scheduler (rtai_sched) is setup and
the timer interrupt system is enabled. After this, an elementary RTAI system
is up and running. In the LRTAI sources a trivial sample RTAI application is
included which is initialized after the above steps have finished.

When an LRTAI user adds his/her own applications to the source tree, he/she
has to take care of this initialization order. A special sub-directory rtai/apps is
provided where the custom applications and the corresponding makefile should
be placed. The higher level makefiles ensure that this directory is linked in after
the RTAI core components. This way, the user has to track only his/her own
module dependencies and it is guaranteed that the RTAI subsystem is already
available when the custom applications start.

Note, that at least one application has to trigger the RTAI domain execution
by calling start_rt_timer. This is not done by default as the period to use should
be specified by the user to fit best the application’s requirements.

4.2 The nano SLOB memory allocator

As already stated above the memory management is the most critical task of an
operating system. Especially when the target system has restricted resources,
it is essential to maximize the utilization and efficiency. While in a standard
desktop system an economic usage of the available RAM is a minor issue,
nowadays a desktop has plenty of RAM installed, and other factors (e. g. inter-
active response time) emerge, an embedded system’s OS should not allow the
chance to leave resources lying dormant.

In a Linux system most memory requests are handled by the SLAB or SLOB
system. As already mentioned in section [3.1.6.2]the SLOB system was chosen
for LRTAI because it is much simpler than the SLAB system but it provides
the same API. In general these allocator systems were primarily developed to
prevent memory fragmentation as a result of frequent and small memory allo-
cations. Small means in this context that the requested memory size is usually
less than the physical page size. However also larger requests are handled by
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Requested blocksize Required SLOB allocation Worst-case

pages Order  Pages waste
IKiB + 1B 2 1 2 0
2KiB + 1B 3 2 4 1
I6KiB + 1B 5 3 8 3
32KiB + 1B 9 4 16 7
64KiB + 1B 17 5 32 15
128KiB + 1B 33 6 64 31
256 KiB + 1B 65 7 128 63
512KiB + 1B 129 8 256 127
IMiB + 1B 257 9 512 255
2MiB + 1B 513 10 1024 511
4MiB + 1B 1025 11 2048 1023
8MiB + 1B 2049 12 4096 2047

Table 4.1: Exemplary worst-case blocksizes of memory requests, which max-
imizes the wasted page count of the allocated block for a particular
order if Linux’ default SLOB allocator would be used.

these systems.
If the requested memory size is greater than the size of a page, the SLOB

allocator calculates the so called order of the request. This order is the loga-
rithmic size of the group of contiguous pages which will be requested from the
memory manager below the SLOB system:

requested_bs +PAGE_SIZE — 1
PAGE_SIZE

order = [logz

The assigned block size arises out of:

assigned_bs = PAGE_SIZE - 2°7%¢"

If an application does not request (accidental) the calculated and assigned block
size, the so assigned block is always larger than the actually requested one and
a trailing part of the block will be unused. This space cannot be reclaimed
by further memory requests unless the original application wishes to resize the
block. If the new size still fits into the already assigned block this can be easily
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performed - a major benefit of this approach. It depends largely on the used
applications if this resizing support is really necessary.

The back of this procedure is that the larger the request is, the larger is the
assigned block. The problem here is that the finally assigned block size has
to be available as free memory, not only the requested size. This increases
the probability of larger memory allocations to be rejected. As an example:
A requested blocksize of 524289 Byte is assumed. To satisfy the allocation
a minimum of 129 pages must be free. The SLOB allocator calculates an
order of eight which would result in an actual memory allocation of 256 pages.
If the count of free pages is between 129 and 255, the allocation would fail
though it could be successfully performed. If further a successful allocation is
assumed and that the application does not try to resize the block later, 127 pages
are wasted. Of course this is one of the worst-case scenarios. Table .1l lists
for each order an exemplary worst-case blocksize resulting in a maximum of
wasted pages of the allocated block.

In an LRTAI system, there are only a few memory allocations which accesses
the SLOB system directly. The usual case is that applications acquire their
memory by calling the corresponding RTAI functions which then again call
the SLOB system. However, as the RTAI system acts as a proxy, it usually
requests blocks from the SLOB allocator whose sizes are multiples of a page
size.

For this reason the support for resizing an already assigned memory area
is only a minor issue. There again, the potential waste of memory should be
minimized. For this the SLOB allocator was modified to drop the concept of
acquiring blocks by their orders. Actually the order is simply redefined to the
minimal count of pages which are necessary to satisfy the requested block:

requested_bs +PAGE_SIZE — 1 J
order =

PAGE_SIZE

While the functionality of resizing a block is still available, it is now de-
generated so that a resize request could increase the block size at most by
PAGE_SIZE - 1 bytes. However this is also the worst-case value of wasted
memory space for each allocation request to the modified SLOB system.

With replacing this allocation mechanism, a bug in the SLOB system of the
used kernel version silently disappears. As pointed out above, the order of
the requested block size is determined by the allocator. Interestingly enough,
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this calculation is faulty in the original kernel version for block sizes which are
close to a wrap to the next higher order. The consequence of this wrong compu-
tation is that the returned memory block is too small. However, the requesting
application does not know this. If it fully utilizes the memory area, there is a
high probability that it overwrites codes or data from other applications. This
would even be worse as there is no memory protection between the core kernel
and the RTAI applications. An unexpected crash or core dumps would have
been a typical reaction.

The reason for calling the modified SLOB system “nano SLOB allocator”
was already mentioned in section All functions which deal with the
cache memory management (originating from SLAB, but also build on top
of the SLOB system) were dropped. This concretely concerns the functions
whose names start with kmem_cache_. ... As the RTAI subsystem does not use
these memory caches and all other modules which usually use these caches are
also already dropped, these functions are no longer necessary.

4.3 Memory layout

On systems with low memory it is not only essential to know how much mem-
ory is available but also how it is organized and used i.e. which constraints
are given by the underlying operating system and/or the hardware architecture
itself. On a PC system for example there is a memory “hole” which can not
be used as normal RAM but is used for accessing the ISA bus and the sys-
tem’s BIOS. This hole starts at address Ox000A0000 (640 KiB) and ends at
0x00100000 (1 MiB), a VGA compatible video adapter’s video memory could
be addressed starting from Ox000B8000 for example.

When a system has more than 1 MiB of RAM installed this memory hole
therefore divides the RAM into two memory areas. While this is not a problem
per se, this placing in the middle of the available address space can be subop-
timal under certain conditions e. g. when searching a contiguous free memory
block. However, this cannot be changed as it is an architectural (and histori-
cal) limitation. The remaining option is to exploit this restriction. This is what
Linux tries to do in its original implementation. As the kernel image has to be
placed somewhere in memory, the default configuration is to place it starting
at 0x00100000. As a result the kernel image and the memory hole forms a
contiguous reserved memory block so the kernel image’s code section, which
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will usually resist statically in memory, does not make the situation worse by
opening a second hole.

Because of this, an original Linux system requires at least 2 MiB of phys-
ical RAM installed or booting is denied before decompressing the kernel im-
age into memory. This limitation makes only sense if the final location of the
kernel image is kept. To potentially allow embedded systems with less than
2 MiB of RAM the memory size check is disabled, relying on the developer’s
involvement. This is to carefully choose the kernel configuration value CON-
FIG_PHYSICAL_START which contains the physical starting address of the
uncompressed kernel image. Leaving this value on its default value 0x100000
locates the image starting at the first mebibyte. Of course the target system
should have sufficient RAM installed to house the uncompressed image. If the
target device has only one mebibyte or even less of RAM, the value must be de-
creased. But the new starting address has to be chosen carefully: As the image
is compressed by default, both the uncompressed image and the compressed
one must fit into the available memory as the decompression mechanism does
not support in-place decompression. On systems with an extreme low count of
RAM, the abandonment of the image compression should be considered (cf.
section [3.1.2).

Both approaches, that is, the use of compression and the use of a non-
compressed image, have in common that the physical start address is a hard
coded value in the kernel image. So the kernel image requires to be placed
at the address or else a recompilation with a changed configuration value is
needed. This will be at least true until kernel version 2.6.22 is releasedJ| In
this version experimental support for relocating the kernel at runtime will be
introduced by keeping the necessary relocation information in the final image.
So a recompilation will not be needed anymore but a tiny relocation function
adopts the offset addresses at runtime. However, the already available docu-
mentation states that this functionality increases the final image size by around
10 percent. So it depends again on the developer’s choice and/or the target
system resources if the use of this new feature is favourable.

Obviously, the actual memory layout depends on a multiple of factors. The
most important one is the actual installed amount of RAM which is physically
present in the system. As pointed out above, the information as to whether
more than 2 MiB are available or not should be known beforehand at compile

’The current LRTAI implementation bases on kernel version 2.6.17.
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BIOS-provided physical RAM map:

BIOS—-e820: 0000000000000000 — 000000000009£fc00 (usable)

BIOS-e820: 000000000009£c00 00000000000a0000 (reserved)
BIOS-e820: 00000000000e0000 0000000000100000 (reserved)
BIOS-e820: 0000000000100000 00000000003£0000 (usable)

BIOS-e820: 00000000003£0000 00000000003££000 (ACPI data)
BIOS-e820: 00000000003££000 0000000000400000 (ACPI NVS)
BIOS-e820: 00000000f£££c0000 0000000100000000 (reserved)

Figure 4.3: Example of a memory map provided by the BIOS for a system with
4 MiB RAM installed.

time. At runtime, the major factor is the BIOS which provides information
about the current system configuration.

This is used by the kernel while requesting a memory map from the BIOS
before switching the CPU into protected mode. This map is a simple list of use-
able and/or reserved memory areas in the system. An example of such a map
is shown in Figure 4.3] Important memory points and the resulting memory
layout of the real-mode kernel part should be evident from Figure Beside
the flow of execution, it shows where the kernel image 4AS respectively its
parts - are located in memory. A standard boot process (i.e. via a bootloader)
on a system with more than 1 MiB of RAM was taken as a basis.

After switching into protected mode and remaining at its final location, the
kernel is able to generate a list of usable RAM areas, founding on the received
memory map and its built-in knowledge of its own location. The last important
step in the memory management is to free the areas which are marked as __init
sections. This is done after the major initializations routines have finished and
the code and data is not needed anymore. By simply marking the relevant pages
as free, they can be utilized by the bootmem allocator for subsequent memory
requests.

4.4 Problems

Even though the chosen approach of this work is straightforward, some prob-
lems appeared when implementing and these had to be solved.

As described earlier the resulting LRTAI system does not require many of
the features, drivers or subsystems which come with Linux by default. To drop
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them from the project, there were two possibilities. The first naive option is to
physically delete the concerned files and directories from the filesystem. But
this approach failed due to the static references in the makefiles which were
not updated. It resulted in a source tree which did not even build an original
Linux kernel at all which was not considered as a good starting point.

A further variant was to solely drop the addressed references in the make-
files. This would result in reviewing every single makefile, around 500 which
are potential candidates for the IA-32 architecture. It should be remembered
that one of the goals was to minimize the needed changes to the original Linux
source tree to retain maintainability and to ease the porting to a newer kernel
version if needed. So this variant was also rejected to a large extent and only
some hand-picked makefiles were chosen as pointed out later.

Since the most features can be individually selected or deselected in the
kernels configuration step, this approach was the preferred one as it is already
built-in and well-supported. So a minimal configuration was created which
excludes almost everything which could be deselected. Together with a clean
source tree a kernel image was built which had a size of about 450 KiB.

However it was detected that many code parts were compiled into the kernel
which were thought to have been unselected deliberately. By examining the
sources the major cause could be determined: Starting with Linux kernel ver-
sion 2.6, the kernel is equipped with the kobject infrastructure. As this system
maintains a close relationship with the sysfs filesystem it was determined that it
would be disabled by not using the sysfs filesystem. Many source files enclose
the relevant code parts with preprocessing directives which ignore the code if
sysfs is not going to be used. However, there are many source files which do
not do this. For LRTAI this files were patched with simple preprocessing in-
structions to statically exclude these lines of code. As this is a straightforward
solution it should be reverted later too. The goal should be to supply a clean
patch for the Linux kernel which could be included in the kernel’s upstream.

Since the core kernel subsystems cannot be deselected during kernel config-
uration a few makefiles have to be touched. But simply dropping the files from
the makefiles would result also in a lot of undefined references as there (tem-
porarily) may still exist, code parts during development which use the source
module’s functions and/or variables. A systematic, iterative method was cho-
sen to solve this problem. References to files which could be directly identified
as not being used or necessary were dropped immediately. All other files were
reviewed by hand and the exported functions were replaced with a stub. So
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it was possible to compile the project at every time. The goal was to restore
the files later with the original code. When all references to a file were elimi-
nated then it could be finally dropped from the makefile. For files which export
needed variables or functions it has to be determined if preprocessing instruc-
tions were used to exclude unused code or to extract the used code to a new
file. The later approach is not covered by the development’s goals but used as a
temporary solution. The final result should be a patch for a specific kernel ver-
sion which excludes all unused code segments. Such a patch could be applied
easily to newer kernel source trees.

Another problem occurred while porting RTAI’s configuration system. Usu-
ally, the kernel build system differentiates cleanly between flags being defined
or not and integer values. Not so for RTAI. Many source files use the directives
directly in statements which resulted in some compile errors after integrating
the config system. The reason for this was that Linux’ build system undefines
non-selected items whereas RTAI’s system defines the items with a zero value.
So for some items a workaround was implemented in the rtai_config.h which
redefines the flags accordingly. However, for a cleaner implementation this
should be fixed in RTAI’s upstream.
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Measurements

5.1 Test system

As atest system a somewhat ancient PC got into action. Since LRTAI (still) has
limited peripheral support and no access to filesystems is available, a method
had to be found to transfer the measured data from LRTAI to a host system.
As a working solution the serial console was used. It had to be activated via
a kernel command line parameter e. g. earlyprintk=ttySO. On the host system
the input was redirected into a file from where the data was extracted later.
Therefore the measured raw data was prefixed with a short tag to allow easier
distinction from normal kernel messages. Due to the lack of a present serial
port on newer systems, the mentioned “ancient” PC system was used. How-
ever, in the measurements the absolute values are of minor interest, the relative
ones have to be interpreted.
The used system consists of the following parameters:

AMD® AMD-K6® CPU, running at 200 MHz

128 MiB RAM installed, but only 8 MiB used by LRTAI
e Linux kernel version 2.6.17

ADEOS IPIPE version 1.3-08

RTALI version 3.4

* Linux timer interrupt is running at 100 Hz
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These parameters are kept constant for all measurements on a LRTAI system
and a normal Linux/RTAI installation. For the later, a Debian Sarge system was
chosen as a base where the kernel was replaced with an accordingly patched
kernel.

5.2 Scheduling latencies

To prove the thesis of chapter [3] that the scheduling latencies of the new LR-
TAI system should not be worse than that of an established Linux/RTAI sys-
tem, some measurements are done. Therefore the latency measurement module
found in RTATI’s tarball was slightly adopted to fit for both environments. This
was necessary as it is split into two parts, a kernel mode task and a user-space
process. While the kernel module calculates the actual data, the user-space
counterpart reads the measured data from a FIFO. This concept could not be
used since in LRTAI the user-space has gone. Therefore, the data is simply
output by the kernel module via rt_printk.

The mentioned module sets up a periodic task which calculates the differ-
ence between the expected and the actual activation time. The default period
of 100 us was used. In each measurement 250,000 values were collected. On
the Linux/RTAI system the system was stressed with I/O and CPU load. This
could be achieved by running several flood pings and intensive hard disk ac-
cess. For CPU utilization, the tool cpuburn was used. On the LRTAI system
only CPU load could be generated. For this the initialization routine finalizes
with an endless loop and not with a call to cpu_idle. The results are plotted in
Figures [5.1H5.4]

Figure [5.1] shows the measured latencies on the Linux/RTAI system using
the oneshot timer mode. While the major part of the values is around 20000
ns, the maximum measured latency is with 44419 ns more than twice as long.
In Figure [5.2] which illustrates the same measurement on an LRTAI system, it
can be noticed that the average latency has minimally improved in comparison
to the Linux/RTAI system. This is due to the fact that on the LRTAI system
no further interrupts need to be processed which is the case in the Linux/RTAI
system. Also the values show a lower jitter.

The remaining Figures[5.3H5.4] show the measured values using the periodic
mode of the schedulers. Here too, the latency of the LRTAI is minimally better
than the one of the Linux/RTAI system. The jitter could also be improved. The
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negative times prove that the scheduler does some kind of calibration trying to
minimize the jitter of real-time tasks. However, in some cases the time delays
are less than expected and the real-time task is activated before the requested
time. This behavior can be optimized by presetting the calibration manually via
the kernel command line or by directly compiling in the target systems values.

The result of these measurements are that the LRTAI system behaves nearly
like a traditional Linux/RTAI system. This means that its efficiency is quite as
good and the system can therefore be used as an alternative solution.

5.3 Image size and memory footprint

The values listed in this section are only for completeness. A comparison be-
tween a Linux/RTAI and a LRTAI would not be meaningful because of the
oppositional design goals.

The kernel image size of the generated z/mage is about 122 KiB. The cor-
responding memory footprint is about 370 KiB thus it is possible to run the
kernel on systems with less than 1 MiB of RAM installed. With continuation
of the work, it should be possible to lower this bound further.
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Chapter 6

Conclusions

In this thesis a lightweight porting of the Real Time Application Interface API
to a bare machine was presented. The work started from an established Lin-
ux/RTAI system and reduced the system to a minimal set of Linux’ core func-
tions which are strictly required by the original RTAI implementation. There-
fore the Linux/RTAI symbiosis was analyzed both at compile time and at run-
time. Important dependencies were pointed out. With the compiled knowledge
and some design goals the actual implementation was started. The core mod-
ules and some additional IPC modules of the RTAI distribution were statically
merged with the original Linux kernel. On the other hand, subsystems which
are usually included in Linux’ default distribution but now are unused or un-
wanted could be excluded successfully. Finally some measurements were done
to prove that the newly created system is an equal replacement of the traditional
Linux/RTAI compositions. With its reduced memory footprint LRTAI is pre-
destined for systems with restricted resources.

The resulting LRTAI system is not yet optimal. There are still some depen-
dencies of RTAI’s scheduler implementation which still require access to some
Linux code paths. This is because the scheduler is capable of not only handling
RTATI’s proper tasks but it is also able to “steal” and return tasks to Linux’
scheduler. Therefore Linux’ internal implementations are called directly to
achieve the desired functionality. This could be improved by continued work.

In spite of the code which is still required by the scheduler and thus still
enlarges the whole system, the already achieved image size and the size of the
memory footprint proves the feasibility of the project and justifies its continu-
ation. Also a continued work could further reduce the changes introduced in
the build system. Likewise new features could be implemented. For example
support for APICs could be introduced which would be the base for SMP.
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Appendix A

Sample implementation for using a
private heap

Listing A.1: properheap.c
#include <linux/kernel.h>
#include <linux/module.h>
#include <rtai.h>
#include <rtai_config.h>
#include <rtai_malloc.h>

MODULE_DESCRIPTION ("Sample, application_which_allocates, _a private_heap");
MODULE_AUTHOR ("Michael_Heimpold_<michael.heimpold@s2000.tu-chemnitz.de>");
MODULE_LICENSE ("GPLv2") ;

#idefine HEAP_SIZE (512 x 1024)

rtheap_t heap;
void xheapaddr = NULL;

static int __ _init heap_init (void)
{
if (! (heapaddr = kmalloc (HEAP_SIZE, GFP_KERNEL))) {
printk ("myapp: _kmalloc_failed.\n");
return 1;

}
printk ("myapp: _heap_inited.\n");
return 0;

#ifdef CONFIG_LRTAI
fs_initcall (heap_init);
#endif

static int __ _exit heap_exit (void)
{
/* Either use rtheap_destroy or kfree; never both! x*/
if (heapaddr)
kfree (heapaddr) ;
return O;
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Appendix A Sample implementation for using a private heap

/%
Rest of module implementation
*/
static int __init myapp_init (void)
{
/ *
*/
int rv;
#ifndef CONFIG_LRTAI
if ('heap_init()) {
printk ("myapp:_could_not_init_heap.\n");
return 1;
}
#endif

if (heapaddr

&& (rv = rtheap_init (&¢heap, heapaddr, HEAP_SIZE, PAGE_SIZE)))

printk ("myapp:_rtheap_init_failed_with_%d.\n",
kfree (heapaddr) ;

return 1;
}
/%
Rest of initialization
*/
printk ("myapp:,_loaded.\n");
return 0;

static void __ _exit myapp_exit (void)

{

/%
Rest of destructor
*/
if ('heap_exit()) {

printk ("myapp:_could_not_destroy_heap.\n");
}
printk ("myapp:_unloaded.\n");

module_init (myapp_init);
module_exit (myapp_exit);

II

rv) ;

{



Appendix B
Building the LRTAI kernel image

The tarball with the source code of this work is stored on the attached data
medium or can be obtained via Internet at [21]].

To build the LRTAI kernel image, extract the tarball to the /usr/src direc-
tory on your Linux workstation. If you use this suggested location, you do not
need to update the included makefiles, otherwise you have to adopt the vari-
ables KERNELSRC and/or KERNELOUTPUT in the build directory’s top-level
Makefile. After this, just changing into the build directory (/us#/src/lrtai-build
per recommendation) and running make builds the image.

If changes to the LRTAI system are needed, a make menuconfig step gives
a graphical user interface for configuration. Changes in the Linux kernel orig-
inated part are not yet recommended, in RTAI’s part some presets can be
changed. Also IPC modules can be chosen.

It is assumed that the build is done as a user root. It was not tested but it
should be possible to run this as an unprivileged user. Use appropriated tools
like fakeroot if necessary.

# extract tarball to /usr/src
buildsys:~# tar -C /usr/src —-xvijf ~/lrtai-0.l.tar.bz2

# configure LRTAI
# (neither necessary nor recommended for the initial release)
buildsys:~# cd /usr/src/lrtai-0.1/build && make menuconfig

# build the zImage
buildsys:~# cd /usr/src/lrtai-0.1/build && make

Figure B.1: Transcript of building the LRTAI kernel image.
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Appendix C

GnuPG signature of the LRTAI
tarball

Version: GnuPG v1.4.6 (GNU/Linux)

iD8DBOBGeXUIKGO9ZzVRhqoRAL 3GAJ9r3BhOkFt5Wj+d1oUoZG80KbZ2ggCZATV1
OJrWAk1lddt40AQZpL7glMyc=
=wbIg
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Appendix D
Copyright notice

For files of the original Linux kernel or of the RTAI distribution the licenses
which were distributed with the particular packages or files apply. Modifica-
tions of such files are usually covered by the same license, see the included

license documents for details.

For all other files which were created by this work and does not contain an

explicit copyright notice and/or license term the following applies:

Copyright (C) 2007 Michael Heimpold <michael.heimpold at s2000.tu-chemnitz.de>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License version 2,
as published by the Free Software Foundation.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,

USA
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Nomenclature

ADEOS ......... Adaptive Domain Environment for Operating Systems
APL ... ... .. ... Application Programming Interface

APIC ............ Advanced Programmable Interrupt Controller
BIOS ............ Basic Input/Output System

BKL ............ Big Kernel Lock

BSS ...l Block Started by Symbol

CPU ............ Central Processing Unit

DSP ............. Digital Signal Processor

ELF ............. Executable and Linking Format

FPU ............. Floating point unit

GNU ............ GNU is Not Unix

GPL ............ GNU General Public License

GPOS ........... Gerneral-Purpose Operating System

GRUB .......... GRand Unified Bootloader
GUL............. Graphical User Interface

HAL ............ Hardware Abstraction Layer

Vo .............. Input/Output

IPC ... Inter-Process Communication
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IPIPE ........... Interrupt PIPEline

IRQ ............. Interrupt request

ISA ............. Industry Standard Architecture
LRTAI .......... Lightweight RTAI

PC .............. Personal Computer

PIT ............. Programmable Interrupt Timer
RAM ............ Random Access Memory
RTAI ............ Real-Time Application Interface
RTOS ........... Real-Time Operating System
SA-RTL ......... Stand-Alone RTLinux

SMP ............ Symmetric Multiprocessing
USB ............ Universal Serial Bus

VGA ............ Video Graphics Array
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